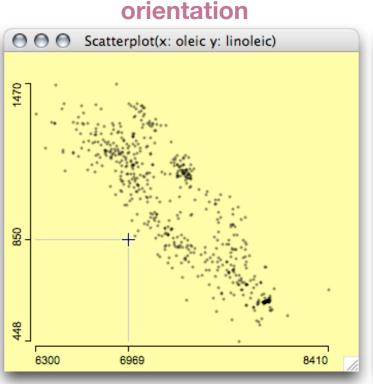
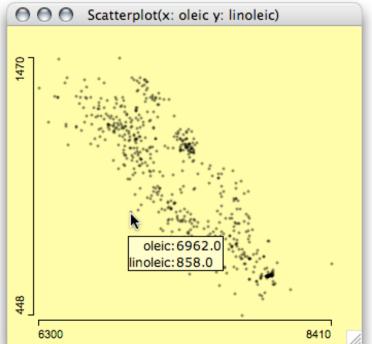

Chapter 1

Interactivity

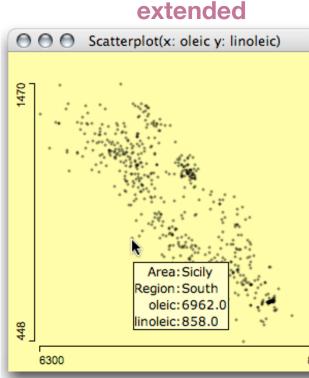
Queries

- Graphics are good at communicating qualitative information but fail to give exact quantities ⇒ need queries to get exact values
- Gridlines can help (only) for the variables within the plot
- Interactive graphics often display very little scale information (cf. Tufte's "data-ink-ratio")
- Examples:



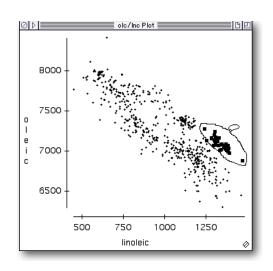


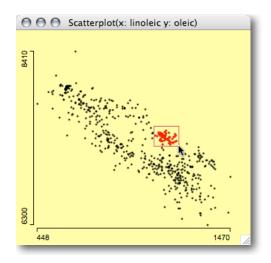
Levels of Queries


- The level of detail of a query should have optional granularities:
 - orientation, "what are the coordinates at the mouse pointer" (interactive grid)
 - standard, "what are the coordinates of a particular value"
 - extended, "what are the values for an object beyond the variables in the plot"

Example: scatterplot

standard




Selections

- Selections as such are not really interesting but they are the necessary step to specify subsets of interest
- In an exploratory set-up we often want to look at the properties of specific subgroups, like

"Find all customers, who paid less than 15% tip, at night, except on weekdays!"

- The flexibility with which we can select data directly determines the how successful we may solve the exploratory analysis.
- Obviously we need different selection tools and selection modes

Selections: Tools

- Different Tools can be provided to select data:
 - Pointer

The Pointer is used to select single points.

Drag-Box

The Drag-Box selects rectangular regions in a graphics window.

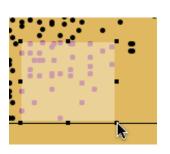
- Brush

Brushing allows a dynamic change (movement) of the selected region – usually a rectangle.

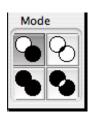
Slicer

The slicer selects intervals along an axis dynamically.

- Lasso

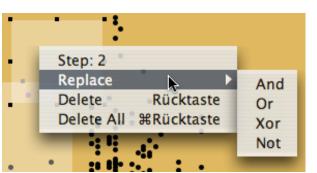

The lasso allows the most flexible definition of the selection area. Startpoint and endpoint are always connected.

MANET

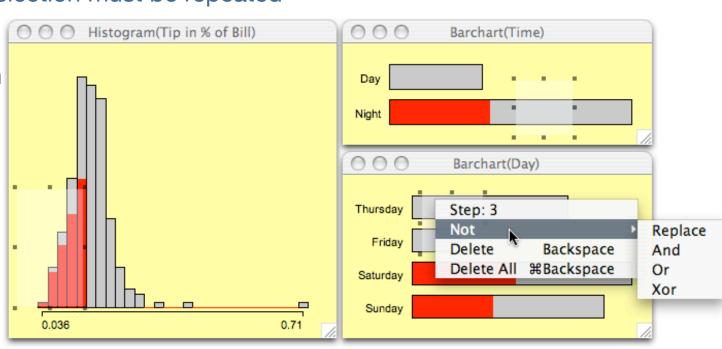

DataDesk

Mondrian

Selections: Modes


- Simple / Standard / Default
 - Only points in the selected region are selected.
- Intersection / AND / ∩
 - Only points that already were selected and are within the new selection stay selected.
- Union / OR / U
 - The newly selected points are added to the current selection.
- Toggle / XOR / ⊕
 - Selected points are deselected, unselected are selected.
- Negation / NOT / ¬
 - Points in the selection region are taken out of the current selection set.

MANET


DataDesk

Mondrian

Selections Sequences

- Why do we need Selection-Sequences?
 - A selection usually only exists as a set of selected points
 ⇒ no formal description of this set
 - Setting up complex selection sets is hard
 ⇒ errors are fatal, i.e. can not be re-done.
 - Alteration of the selection set is usually impossible
 ⇒ the complete selection must be repeated
- Tech. Solution
 - For each selection we store:
 - id
 - plot
 - coordinates
 - selection mode

Selections Sequences

 Selection-Sequences are directed, i.e. for any three selection sets A, B, C

A OR B AND C = A OR (B AND $C) \neq ((A$ OR B) AND C) and

$$A \cup B \cap C = A \cup (B \cap C) \neq ((A \cup B) \cap C)$$

holds, i.e. explicit left-parenthesis!

- Usually this is what the user was thinking about!
- Selection-Sequences can easily be translated into SQL.
 (Again, mind the left to right order of operators!)