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Examining a Single Variable

This chapter introduces the most important statistical graphics to inves-
tigate the structure of a single variable. The plots in this chapter can be
best categorized by the scale of the variable they display — either contin-
uous or categorical. The latter includes both alphanumerical (nominal)
and numerical (possibly ordinal) categorical data.

The most important interactive controls and variations are explained
for each plot. Furthermore, the definition and use of highlighting are
described.

2.1 Categorical Data
Barcharts and Spineplots

One of the most basic plots is the barchart. As the name implies, a bar
is drawn for each category of the variable. The length of each bar is
proportional to the number of cases falling into that particular category.

Barcharts can be either drawn

Day vertically (what most applica-

Thursday | | tions do) or horizontally. Al-
though the vertical layout is

Friday I:I probably the more natural way

to plot bars, the horizontal lay-

| out has the advantage of al-
| lowing bar labels to be printed
in full length. This is es-
FIGURE 2.1 pecially useful when working

A barchart for the four days of the with many categories. Figure

week from the Tipping data case study. ?-1 shows a barchart in a.hor-
izontal layout for the variable

Weekday from the case study in Appendix i, the Tipping data. Note that
the order of the bars matters a lot in this example. The default order —
usually a lexicographic order — would place Thursday last, which would
make a correct interpretation of the plot unnecessarily complicated.

Saturday |

Sunday |
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Day

Thursday -:‘ Gender
Friday .:‘ Female _
Saturday - | Male |
Sunday - |

FIGURE 2.2
Highlighting in a barchart.

Adding highlighting to barcharts is straightforward. The barchart of
the selected data points is simply drawn on top of the base barchart of
the whole sample. Figure 2.2 gives an example of a highlighting in a
barchart. All female customers have been selected in the same barchart
as shown in Figure 2.1. We see immediately that the distribution of the
highlighted cases is not of a different structure than the whole sample,
but still, the proportion of females appears to be larger on Thursdays
than on Sundays. What makes the comparison of the proportions so dif-
ficult? The highlighted part of a bar must be normalized in order to be
comparable — a visually challenging task.

Spineplots use normalized bar lengths while the bar widths are propor-
tional to the number of cases in the category. Figure 2.3 shows the data
from Figure 2.2, but now the barchart has been switched to a spineplot.
The area of the bars is still proportional to the category frequencies. The
highlighting proportion can now be compared across all categories since
the highlighting direction remains unchanged relative to the barchart
and the area of the highlighting is also proportional to the highlighting
frequencies. Now we see directly that the proportion of female customers
declines monotonously from more than 50% to less than 25% from Thurs-
days to Sundays. In Mondrian, barcharts and spineplots use the same
framework and switching between the two representations takes press-
ing only a single key.

Day
Thuscey NN ] Gender

Saturday - | Male |
suncoy [

FIGURE 2.3
The same data as in Figure 2.2 in a spineplot.
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Looking at absolute and relative amounts of highlighting shows the
need for sorting and reordering of barcharts, which is discussed in Chap-
ter 7. The generalization of barcharts and spineplots for more than just
one variable, i.e., the mosaic plot, is introduced in Chapter 4.

2.2 Continuous Data

There are far more plots for continuous data than for categorical data.
Obviously the amount of information a continuous variable can hold is
far greater than a categorical does. Depending on what aspect of a con-
tinuous variable is of interest, the one or the other graphic might be the
better choice.

Dotplots

Dotplots are a very simple way to plot one-dimensional data. Neverthe-
less, there are at least three distinct versions. The standard dotplot is
a scatterplot in one dimension, i.e., a continuous variable is plotted along
one axis only. Figure 2.4 shows an example of a standard dotplot for the
variable Tip in USD. Although this dataset has only 244 observations, we
note a strong overplotting for smaller values. No structure is visible for
tips less than $4, whereas the outliers beyond $6 can be easily spotted.

Jittering is often applied to avoid overplotting in glyph based plots.
Jittering is a technique where a small amount of noise — usually white
noise, i.e., uniformly distributed random numbers — is added to the data
to avoid overplotting. Figure 2.5 shows the same dotplot as in Figure 2.4
now with a small amount of noise added orthogonally to the z axis. In
the jittered dotplot far more structure is visible in the data even for
amounts of less than $4. The jittering reveals accumulation points at
amounts of $2.00, $2.50, $3.00 and $4.00. Obviously, many customers
tend to give a tip of multiples of half a dollar.
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FIGURE 24
A standard dotplot for the variable Tip in USD of the Tipping data.
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FIGURE 2.5
The same data as in Figure 2.4 with jittering applied.

Although jittering reduces the amount of overplotting considerably, it
also introduces a negative effect. The pseudo structure along the virtual y
axis may add visual artifacts, as the reader of the graphics will be inclined
to interpret the location of points along the y axis as well. A first step to
reduce this negative effect is to use so-called textured dotplots as in-
troduced by Tukey and Tukey (1990). Textured dotplots use a systematic
way to place points side by side to avoid overplotting. There are two draw-
backs of such an approach: first, it is impossible to seamlessly switch be-
tween the systematic placement and a random placement of points, which
is needed for larger datasets. Second, a systematic placement of points
needs to have some idea of the density of the variable displayed, which
is already a far more complex concept than the initially simple concept
of a dotplot. Figure 2.6 shows a dotplot where the amount of jittering is
proportional to the data density. This reduces potential visual artifacts
due to pseudo structure along the y axis. This variation of a dotplot is
probably a data representation giving best insight into the structure of
the variable, but also far more complex than a standard dotplot.

A nice overview of the generation of many variations of dotplots can
be found in Wilkinson (1999). In an interactive context, the amount of
jittering should be controlled interactively and the added noise should be
resampled when requested by the user.
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FIGURE 2.6
A dotplot with jitter added which is proportional to the data density.
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Boxplots

The boxplot is a graphic which depicts both summary statistics as well as
raw data. At the core of a boxplot is the so-called five number summary.
The five number summary of a variable consists of the minimum, lower
hinge, median, upper hinge and maximum. The definitions of the median
and the extreme values are well known. The hinges are the medians of
the subsamples which are created when dividing the original sample into
two parts at the median. Thus, quartiles (0.25 and 0.75 quantiles) and
hinges may differ by one index in the sorted sample, which usually does
not change the resulting boxplot. Therefore the hinges are often substi-
tuted by quartiles for simplicity. Figure 2.7 illustrates all components
of a boxplot. The core — the box — is built up by the upper and lower
hinges and the median. The difference between the hinges — the so-
called h-spread — is used to define the inner fence and the outer fence.*
The whiskers are drawn from the upper (resp. the lower) hinge to the
first value which is no further away from the hinge than 1.5 times the
h-spread — the inner fence. All points between inner and outer fence
are called outliers; all points further away then 3 times the h-spread (the

*The inner and outer fences are never drawn in a boxplot, as they are only imaginary
thresholds.
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FIGURE 2.7
A boxplot with all its elements annotated.
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outer fence) are called far outliers. Far outliers are usually marked with
a more distinct symbol.

Comparing the boxplot in Figure 2.7 with the three dotplots above
shows advantages and disadvantages of this display. The boxplot shows
robust measures of location and spread, which gives basic properties of
the sample’s distribution. These properties are impossible to determine
from a dotplot. On the other hand, all data points which are not outliers
are represented in an abstract way. Thus it is impossible to see gaps or
accumulations in a boxplot, both of which are easy to spot in a dotplot.

Highlighting in a boxplot must respect its special structure made up
by summaries and single values. Whereas it is obvious that the glyph
of a selected outlier can be highlighted easily, it is not sensible to high-
light the box of a boxplot the same way the box in a barchart is high-
lighted. An example of how highlighting in boxplots can be implemented
is shown in Figure 2.8. The upper boxplot shows a base boxplot without
any highlighting. In order to be able to plot a highlighted boxplot atop
the base plot, the whiskers have been modified and are now light gray
boxes extending the inner box of the boxplot. The lower boxplot shows
the highlighting. A regular boxplot for the highlighted cases is plotted
in the highlighting color atop the base plot. The box of the highlighted
boxplot is narrower and slightly transparent such that the parameters of
the base boxplot are not obscured.

The definition of a boxplot has some desirable properties, in particular
when we assume the data to follow a normal distribution. 50% of the data
around the data center lie in the box — regardless of the distribution. For
a (standard) normal distribution the quartiles can be found at -0.675 and
0.675 so that the h-spread is approximately 1.35. Adding 1.5 times to the
box yields an interval of [—2.698;2.698]. The probability that we observe
values outside this interval is P(z ¢ [—2.698;2.698]) = 0.7%. Thus the
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Highlighting in a boxplot needs a modification of the rendering of the
unhighlighted boxplot.
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probability that a value is an outlier is just below 1%.1

Histograms and Spinograms

Histograms are based on a summary of the sample. For each interval in a
set of consecutive intervals, the number of observations falling into that
interval is counted. The resulting counts are visualized with bars plotted
over the intervals. The area of each bar is proportional to the correspond-
ing count for this interval. The intervals — which are called “bins” —
are usually set to have equal width and to be left closed and right open.
Figure 2.9 gives an example of two histograms. Both histograms show

1 10 1 10

FIGURE 2.9

Two histograms of the variable Tip in USD. The left histogram uses bin
width of exactly $1, whereas the right histogram uses slightly wider bins
of width $1.01. Both start at $1.

the same data. The left histogram uses interval bin width of exactly $1,
the right histogram a slightly larger bin width of $1.01. Both histograms
start at $1. The apparent shape of the distributions looks quite different.
As we see from this example, the parameters that determine a histogram
are bin with and anchor point. For the data in Figure 2.9 a bin width of
$1 seems more justifiable, and thus the resulting histogram is probably
the better choice.

The dotplots showed accumulations at full and half dollar amounts,
which are not visible in either of the histograms of Figure 2.9. To find
these accumulations, the bin width has to be set to even smaller amounts
than $1.00. Figure 2.10 shows the same data for bin widths $1.00, $0.50
and $0.25. The smaller the bin width, the more apparent are the accumu-
lations at full dollar amounts of $2.00 and $3.00. For a better comparison,
the scales of all three histograms have been set to be equal. Since the

TAn anecdote says that John W. Tukey answered the question why it is 1.5 times the h-
spread with: “Because 1 is too small and 2 is too large.”
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FIGURE 2.10

Three histograms of the variable Tip in USD. The chosen bin widths
(from left to right) are $1.00, $0.50 and $0.25. All histograms share the
same scale and start at $1.

area of bars is proportional to counts (or proportional to the relative fre-
quency), the sum over the area of all rectangles is the same for all three
histograms.

It is obvious from examples in Figure 2.9 and Figure 2.10 how impor-
tant it is to be able to change bin width and anchor point of a histogram
quickly and flexibly. Interactive controls of a histogram must allow us to
change the two parameters by a simple mouse drag or keyboard short-
cuts. If changing the parameters involves retyping a command and/or
creating a whole new plot, the analyst might be inclined to avoid looking
at many different views.

Highlighting in histograms can be implemented easily. A highlighted
histogram of the selected cases is drawn atop the histogram of all cases.
In Figure 2.11 a histogram of the rental price per area is plotted for
the data from case study E. All apartments classified to be located in a
“good” neighborhood are selected. The immediate question which arises
is whether the distribution of the highlighted cases is any different from
the distribution of all cases. This question is difficult to answer from the
highlighted histogram in Figure 2.11 since we would need to compare
the proportions of the highlighted cases across all bars of the histogram,
which is visually unfeasible.

One way out is to use the same “trick” as switching from barcharts to
spineplots, i.e., all bars are normalized to have the same height, but pro-
portional width. The resulting plot is called a spinogram (cf. Hofmann
and Theus, under revision). Spineplots have the nice property that high-
lighted proportions can be compared directly. However, it must be noted
that the = axis in a spinogram is no longer linear. It is only piecewise
linear within the bars. Although this might be confusing at first sight,
it yields two interesting characteristics. Areas where only very few cases
have been observed are squeezed together and thus get less visual weight.
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FIGURE 2.11

The variable Rent per m? from case study E. Left: a histogram with all
apartments in a “good” neighborhood highlighted, right: the same data in
a spinogram.

Let £ denote the empirical distribution function of a variable X, then the
# axis in a spinogram is linear in F~!. Applications and extensions of
spinograms will be further discussed in Section 3.2.

As both views, histograms and spinograms, offer specific insights, it is
desirable to switch quickly between the one and the other view, without
being forced to create a new plot.

Density Estimation

Histograms are often used to visualize the density of a one-dimensional
continuous sample. Figure 2.9 and Figure 2.10 illustrated the strong vari-
ation of histograms with the change of the bin width and the anchor point.
Histograms are powerful in cases where meaningful class breaks can be
defined and classes are used to select intervals and groups in the data.
However, they often perform poorly when it comes to the visualization of
a distribution.

This drawback was identified long ago, and several strategies have
been taken to overcome this problem. One solution is to use so-called
average shifted histograms or ASHs for short (see Scott, 1992). The
idea behind average shifted histograms is quite simple. For a given bin
width, the anchor point of a histogram can be shifted within the range of
one bin width. Using k different starting points will result in % different
histograms. For any given x the average over the k& bar heights can then
be computed to construct a smoother estimate of the underlying density.

Another method to visualize the density of a variable is to use kernel
density estimators. The idea behind kernel density estimators is as
follows. Given a sample of the size n, each observation contributes 1/n-th
of the density. This contribution to the density is distributed around the
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actual observation x; using a scaled kernel function k(z) at point z;. For
a given z the resulting density estimate can then be summed up over all
contributions k,, (z) each centered around the n x;’s, yielding

r —X;

Fla) = % S <7> for k(z) = k(—2). (2.1)

C

For all kernel functions &

/Oo k(x)dz = 1, /OO K (2)dz < oo, ’k(;”)’ 0 for|z] —oo. (22)

— 00 — 00

Figure 2.12 illustrates how a kernel density estimate is assembled
from n kernel functions for the z; using a normal density as kernel. The
n = 244 cases of the variable Tip in USD with their corresponding kernels
k(x;) are plotted in blue. Summing these functions up for each z gives the
resulting density estimate plotted in purple. Note that the functions of
the blue and the purple curves are drawn on a different scale such that
the kernel functions are visible. Various kernels can be used such as
rectangular, triangular or normal.

It can be shown that ASHs converge for & — oo toward a kernel density
estimate with a triangular kernel (see Venables and Ripley, 1999).

Figure 2.13 shows the three histograms from Figure 2.10. Each his-
togram has a kernel density estimate superposed which uses a bandwidth
c equal to the bin width of the underlying histogram. The leftmost es-
timate is clearly oversmoothed and cannot capture the structure of the
variable, whereas the rightmost estimate looks quite rough and is thus
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FIGURE 2.12
IMlustration of how a kernel density is assembled out of the n contributing
points x;.
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FIGURE 2.13
The same histograms as in Figure 2.10 now with kernel density estimates
superposed. Male smoker parties are selected.

not satisfying. This trade-off — also generally referred to as bias-variance
trade-off — can be best investigated when the bandwidth c of the density
estimator can be varied interactively such that the analyst can see the
change of the estimate instantaneously. For the data in Figure 2.13 there
seems to be no ‘best’ bandwidth which captures the composite density.

CD-Plot

Although the spinogram is an efficient, area proportional display to visu-
alize the conditional distribution of a subgroup of a continuous variable,
the transformed z-axis of the spinogram can be difficult to interpret in
some cases. The CD-plot visualizes the conditional distribution (CD) by
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FIGURE 2.14

The variable Rent per m? from case study E. Left: a spinogram with all
apartments in a “good” neighborhood highlighted and a density estimate
superimposed, right: the same data in a CD-plot. The CD-plot preserves
the scale, whereas the spinogram focuses on intervals with a significant
signal.
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setting the density estimate of the selected subgroup in relation to the
density estimate of the complete sample. The histogram is used just as a
backdrop for orientation.

Figure 2.14 shows a CD-plot for the same data as in Figure 2.11. The
trend in the data is the same as for the spinogram. The strong variation of
the estimate for prices between €15 and €20 is due to the small number
of points on which the estimate is based in this interval. This statistically
insignificant information is avoided in spinograms since areas of very low
density are squeezed to intervals of almost zero size.

2.3 Transforming Data
Continuous Data

Transforming data can have many motivations. A method requires nor-
mally distributed data to perform correctly, an extreme skewness of a
distribution squeezes 99% of a variable’s data onto 1% of the range of the
variable, or the data simply needs a transformation into an established,
more readily interpretable scale.

Transforming a variable is one of the earliest procedures found in dy-
namic graphics. The Box-Cox transformation defined by

A
Era) =1 exz0
rpo(\ @) = A (2.3)
In(z + «) for A\ =0

is the most common transformation for continuous variables and general-
izes a simple logarithmic transformation to a more general power trans-
formation.

A qqplot is often used to verify to which degree a sample follows a
specific distribution. They plot the empirical quantile ;) of the ordered
sample against its theoretical quantile, e.g., for a standard normal distri-
bution :/:(nfH ). If a sample follows the theoretical distribution, all points
in the scatterplot fall approximately on a line.

Figure 2.15 shows a qqplot for the variable Tiprate from case study
i. Obviously the data are not normal, as several points deviate strongly
from the line.

There are several approaches to make the data more normal. The sim-
plest — and often used — is to take logs. In many situations the technical
background even allows us to interpret the logarithm of a quantity (e.g.,
the quantification of sound waves).
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The resulting qqplot is
shown in Figure 2.16 left.
As the result is not sat-
isfying, a Box-Cox trans-
formation with an opti-
mized A-value might be
more appropriate. Us-
ing a dynamic transfor- °
mation in DataDesk it
is easy to find that for o
A = 0.155, the variable o
is no longer skewed and
the shape is very close to
a normal distribution (A
has actually been chosen
to match the skewness
1 = 0 and a kurtosis
B2 = 3 of a standard nor- FIGURE 2.15
mal distribution). The  gqplot of the tiprate from case study i. (axes
resulting qgplot in Fig-  are omitted as they cannot aid interpreta-
ure 2.16 (center) shows  tion).
an improvement over the
plain log-transformation, but many points still deviate from the line.

Neither the log-tranformation nor the Box-Cox transformation gives
satisfying results in the qqplot. There is one more option left: removal of
outliers. Figure 2.16 right shows the qqplot with the three largest values
removed — the corresponding boxplot of the variable shows 4 outliers
with the smallest of them being only slightly above the upper whisker.
The qgplot confirms that this is the best solution of all three approaches.
There is no general rule as to how to handle skewed or non-normal data.
If normality is a prerequisite of a method a Box-Cox transformation or
the removal of outliers might do the job. Both solutions have their prob-
lems. Any conclusion drawn from an analysis of a transformed variable
must be retranslated into the original domain — which is usually not an
easy task. A special handling of outliers, be it a complete removal, or
just visual suppression such as hot-selection or shadowing, must have a
cogent motivation. At any rate, transformations of data are usually part
of a data preprocessing step that might precede a data analysis. Also it
can be motivated by initial findings in a data analysis which revealed yet
undiscovered problems in the dataset.

Default transformations which standardize data either by mean and
standard deviation or onto a [0, 1] range should generally be avoided, as
they put all data on scales which can no longer be interpreted.
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Log Transformation Box-Cox Transformation (lambda=0.15) Outlier removed

®
o

FIGURE 2.16

Three approaches to achieve normality: log-transformation (left), Box-
Cox transformation with optimized )\ (middle) and a simple exclusion of
the three biggest outliers (right).

Categorical Data

At a first sight there might not be much to transform in a categorical vari-
able. But even for categorical data there is a problem similar to skewness.
Ordinal, numerical variables such as “number of persons in the family”
tend to have the majority of observations distributed among only a few
classes.
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FIGURE 2.17
In the barchart for Number of Persons in Household, only 0.5% of all cases
make up more than half of the categories.
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FIGURE 2.18
Joining and splitting classes can be useful even for just a few categories.

Figure 2.17 shows the variable Number of Persons in Household for the
Current Population Survey ’95 which covers 63,756 of households in the
U.S. In this example, only 0.5% of the data make up 8 out of 15 categories.
In order to avoid clutter, all categories bigger than 6 can be joined to a
new class “7+” as indicated in Figure 2.17 right. One might think that
summarizing classes 7 to 15 is a typical preprocessing job. On the other
side, it is very efficient to have the ability to decide on such an operation
on the fly in an interactive system. Nevertheless, all operations which
change data can be a source of errors or at least of misinterpretations
and thus should only be applied with much care.

Joining and splitting classes can be very effective even with a few cate-
gories. For the same census data used in Figure 2.17 the variable Marital
Status is shown in a barchart in Figure 2.18. The left barchart shows the
two categories Separated and Divorced as two distinct classes, whereas
the right barchart shows the joined version. The two barcharts are not
really very different, but all analyses and graphics which are split by, i.e.,
conditioned on, the 4 or 5 groups of the variable might change substan-
tially.

2.4 Weighted Plots

Basically, one can distinguish three motivations for weighted data. The
first is a technical motivation. Whenever we look at purely categorical
data, it is not necessary to supply a dataset case by case. A breakdown
summary can capture the dataset without loss of any information. Figure
2.19 shows the first 6 lines of the raw data of the Titanic dataset, case by
case. All six lines are identical as the group of adult male first class
passengers who survived has size 140. In this format, the whole dataset
has 2,201 entries. The far more efficient version of this information is the
summarized data table shown in Figure 2.20. In this representation, the
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Class Age Gender Survived
First Adult Male Yes
First Adult Male Yes
First Adult Male Yes
First Adult Male Yes
First Adult Male Yes
First Adult Male Yes
FIGURE 2.19

The first 6 lines of the Titanic dataset in raw format, case by case.

dataset has an extra column specifying the size of each group. Since Class
has four categories, Age, Gender and Survived two each, the dataset will
have at most 4 x 2 x 2 = 32 lines. Because 8 of the 32 combinations of the
variables do not occur in the data, the dataset can be reduced to 24 lines.

Summarized data tables can be obtained via database queries. A data-
base containing the Titanic data case by case can by queried with the
simple SQL command.

SELECT Class,
Age,
Gender,
Survived,
count (x)
FROM Titanic
GROUP BY Class,
Age,
Gender,
Survived

For the Titanic dataset, it makes no real difference whether we handle
the 2,201 cases in a raw format or the summarized version as long as
the software is capable of handling both formats. However, as datasets

Class Age Gender Survived Count
First Adult Female No 4
First Adult Female Yes 140
First Adult Male No 118
First Adult Male Yes 57
First Child Female Yes 1
First Child Female No 0
FIGURE 2.20

The first 6 lines of the Titanic dataset in summarized form.
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get really large this difference can become dramatic. The second situa-
tion in which weights are introduced is when sampling unequally from
a population. Statistics and graphics must then account for the weights.
A third reason to use weights is a change of the sampling population.
For example a dataset on cancer rates measured on a county level might
be weighted with the population of a county in order to switch from the
distribution of rates within counties to the distribution of actual cancer
cases.

How can statistical graphics incorporate weights? The modification is
quite simple for area-based plots displaying counts. Whereas in an un-
weighted plot bar sizes are proportional to the count in a class, a weighted
plot has bar sizes proportional to the sum of the weights in a class. This
modification covers plots such as barcharts, histograms and mosaic plots.
Glyph-based plots need different modifications. In a scatterplot the point
sizes might be adjusted according to the weights. However, this may lead
to overplotting and large differences in individual weights could obscure
the scatterplot as a whole.

Figure 2.21 gives an example of a weighted histogram compared with
the unweighted histogram. The left histogram shows the percentage of
votes for G.W. Bush in the 2004 presidential election for the 65 counties
in Florida (cf. case study I). The right histogram shows the same plot now
weighted by the number of votes in each county. Note that as we change
the population from counties to voters — the e.g., rightmost bar rang-
ing from 75 to 80 percent corresponds to 5 counties, this bar represents
roughly a quarter million votes (out of almost 7.5 million votes) in the
right histogram — the y-scales are no longer comparable. Switching from
unweighted to weighted histograms, i.e., from counties to voters, shows
that Bush’s support was stronger in the less populated counties since high
percentages are downweighted and low percentages are upweighted.

T U
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FIGURE 2.21

Histograms of the percentage votes for G.W. Bush in the 2004 presiden-
tial election in Florida. Left: unweighted counts by county, Right: per-
centages weighted by the number of voters.
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Exercises

2.1. Barcharts and Spineplots
For the Tipping data in case study i

(a) Use barcharts and spineplots to investigate on what days smok-
ing parties are most common.

(b) What problem arises when we look at the size of smoking par-
ties?

2.2. Dotplots, Boxplots and qgplots
For the Tipping data in case study i

(a) Compare the benefits of dotplots and qqplots for the variable
Tip in USD.

(b) What is the percentage of points classified by a boxplot to be an
outlier if the underlying distribution is assumed to be standard
log-normal?

(c) Can we expect to observe outliers in a boxplot at the steep side
of a skewed distribution?

2.3. Histograms & Spinograms
Recreate the graphics from Figure 2.11. What can be said about the
rental prices of apartments in buildings built before World War I1?

2.4. Density Estimators

(a) Create a histogram with a density estimate for the tiprate from
case study i. How do the outliers influence the estimate?

(b) What does the shape of a density estimate look like for the
bandwidth ¢ — co?

2.5. Transformations
For the Tipping data in case study i

(a) Draw a qqgplot for the tiprate with the three largest and the
smallest values removed. Does the qqplot improve over Figure
2.16?

(b) Investigate the four outliers in the boxplot for Tiprate. Why
could these cases be treated separately or even neglected?

2.6. Weighted Plots

(a) Create the two graphs in Figure 2.21 of the Florida election
data for John F. Kerry. Do these graphs yield a consistent in-
terpretation to what we learned from Figure 2.21?
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(b) Create a summarized version of the data from case study B.
How many lines has the file?






